skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Scott, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Course-based undergraduate research experiences (CUREs) can have many positive effects on students’ learning and sense of self-efficacy. We have developed a networked CURE between four different institutions designed for courses in analytical chemistry that focuses on the process of adapting published solution-phase colorimetric assays into microfluidic paper analytical devices (μPAD) assays. We used a backward design process to develop 5 scaffolded learning outcomes: (1) identify and assess relevant literature sources, (2) propose a viable experimental plan to answer a well-defined scientific question based on literature information and experimental results, (3) apply appropriate methods of data analysis to interpret experimental results, (4) evaluate multiple pieces of experimental data to support conclusions, and (5) contribute to a team by working collaboratively toward common goals. Students begin the project by completing a literature search assignment to identify a published colorimetric assay they plan to adapt. They then write a proposal which identifies their analyte, sample of interest, and the figures of merit required for successful sample analysis using their μPAD. During the 3–5 weeks of laboratory work, students conduct their experiments, and each week evaluate the significance of their data and propose an experimental plan for the upcoming week. At the end of the μCURE project, students present their results in a joint, asynchronous poster session. Student artifacts are assessed for evidence of particular skills using rubrics from the Enhancing Learning by Improving Process Skills in STEM (ELIPSS) Project. Scores on the rubrics indicate partial to full attainment of each of the five learning outcomes 
    more » « less
    Free, publicly-accessible full text available August 15, 2026
  2. [Ru(bipy)3]+is a key intermediate in the chemistry of the ubiquitous [Ru(bipy)3]2+, including in recent photoredox applications. Isolation helps to illuminate the monocation’s structure and potential roles in catalytic reactivity. 
    more » « less
  3. Training for robotic surgery can be challenging due the complexity of the technology, as well as a high demand for the robotic systems that must be primarily used for clinical care. While robotic surgical skills are traditionally trained using the robotic hardware coupled with physical simulated tissue models and test-beds, there has been an increasing interest in using virtual reality simulators. Use of virtual reality (VR) comes with some advantages, such as the ability to record and track metrics associated with learning. However, evidence of skill transfer from virtual environments to physical robotic tasks has yet to be fully demonstrated. In this work, we evaluate the effect of virtual reality pre-training on performance during a standardized robotic dry-lab training curriculum, where trainees perform a set of tasks and are evaluated with a score based on completion time and errors made during the task. Results show that VR pre-training is weakly significant ([Formula: see text]) in reducing the number of repetitions required to achieve proficiency on the robotic task; however, it is not able to significantly improve performance in any robotic tasks. This suggests that important skills are learned during physical training with the surgical robotic system that cannot yet be replaced with VR training. 
    more » « less
  4. Abstract Mass movements from glacial and lahar terraces in the middle and lower reaches of rivers draining the Washington Cascade Range to Puget Sound may represent a substantial but poorly quantified portion of those rivers' sediment supply and pose significant mass movement hazards. We used repeat LiDAR elevation data, aerial imagery, and well logs to quantify and characterize terrace sediment delivery in nine major watersheds over a median period of 12 years. In the 1,946 river kilometers for which repeat LiDAR was available (71% of the 2,736 total river kilometers flanked by terraces), 167 mass movements eroded 853,600 ± 19,400 m3/yr. Analysis of mass movement frequency and volume indicates that terrace sediment delivery is dominated by small, frequent mass movements, as opposed to large, infrequent ones like the 2014 Oso landslide. This sediment source is low in river networks, well connected to streams, and has a substantial coarse‐grained and durable component, all of which increase its significance to sedimentation in developed, lowland reaches. However, rates of terrace sediment delivery vary among basins and between adjacent terraces, which are stratigraphically laterally heterogeneous. While lateral fluvial erosion is usually necessary to initiate terrace mass movements, valley bottom geometry and terrace stratigraphy poorly predict erosion volume, which is better predicted by hillslope geometry and mass movement style. Effective management of sedimentation and mass movement hazard should acknowledge the importance of terrace sediment delivery and the variability among and within watersheds in sediment delivery, sediment characteristics, and failure mechanisms. 
    more » « less
  5. The trend for improved more precise diagnostics and management of disease heavily relies on the measurement of panels of biomarkers in physiological samples of patients. Ideally, the ultimate goal would be to detect as many clinically relevant biomarkers as possible in a single drop of blood, achieving quick, sensitive, reproducible, and affordable detection in small volume physiological samples. Bioluminescent (BL) proteins provide many of the desired characteristics required for such labels, including detection at extremely low concentrations, no interference from physiological fluids leading to excellent detection limits, and compatibility with many miniaturized systems. However, to date the use of BL proteins has been restricted by their limited multiplexing capabilities. BL proteins typically exhibit a single emission profile and decay kinetics making the simultaneous detection of multiple analytes difficult. Recent progresses in this area include the use of two different engineered luminescent proteins to achieve resolved signals via one-dimensional time resolution. This approach, however, to date only lead to a dual analyte detection. Herein, we have demonstrated that using a two-dimensional approach that combines both temporal and spatial resolution, we can expand the multiplexing capabilities of bioluminescent proteins. To that end, the photoprotein aequorin (AEQ) has been employed for the simultaneous detection of three separate analytes in a single well, differentiated through the use of three discrete time/wavelength windows. Through a combination of site-specific mutations and synthetic coelenterazines “semi-synthetic” AEQ variants have been developed with altered emission profiles and decay kinetics. In this study, two AEQ mutant proteins were genetically conjugated to three pro-inflammatory cytokines (tumor necrosis factor alpha, interleukins 6 and 8) resulting in AEQ-labeled cytokines. These fusion proteins were combined with synthetic coelenterazines resulting in proteins with differing emission maxima and half-lives to allow for the simultaneous detection of all three cytokines in a single sample. The validity of the assay was demonstrated in serum by employing human physiological samples and comparing our results with commercially available individual tests for each of the three cytokines. 
    more » « less